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Abstract

We propose three different methods to initialize optimal transport algorithms in both the discrete and semi-discrete settings. After
introducing the optimal transport problem, we start by explaining why finding ”good” (in a certain sense) initial weights is an important
problem in computational optimal transport. We then describe three novel procedures to find such weights. Proofs of correctness are
also given. We finally show on many numerical examples how choosing these weights improve the running times of optimal transport
algorithms. We also describe some applications in various fields such as non-imaging optics; matching between a point cloud and a
triangulated surface; seismic imaging.
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1. Introduction

Recently, optimal transport has become a useful tool in mathe-
matics from both a theoretical and numerical point of view due
to its connections with many different fields such as image pro-
cessing [1], machine learning [2, 3, 4] and the study of partial
differential equations [5]. Efficient numerical methods have also
been proposed based on the different formulations of optimal
transport. For instance, we will see in the next section that, in
some settings, it can be formulated as an optimization problem
and thus be solved using traditional methods such as Newton-
based algorithms. It is also well known that the choice of the
starting point in such methods is very important as it directly im-
pacts its convergence properties. In this paper, we are interested
in this aspect of optimal transport that is the choice of the starting
point in different numerical methods.

We start by a brief introduction on optimal transport and we
detail the existing numerical methods for solving it in two different
settings. We also discuss why the choice of the starting point is
important and even mandatory in some practical settings. We then
present three original methods for finding such weights before
using them on different numerical examples and applications.

1.1. Optimal transport

We introduce here the basic notions of optimal transport, for
more details on both its theoretical and numerical aspects, one
can refer to [6, 7, 8, 9] and references therein.

The optimal transport is an old problem in mathematics dating
back to the 18th century that was first stated by Gaspard Monge
[10]. One is interested in transporting a probability measure µ
supported on a set X ⊂ Rd onto another probability measure ν
supported on a set Y ⊂ Rd while minimizing a given cost function
c : X × Y → R. More precisely the so-called Monge formulation
can be expressed as the following minimization problem:

min
T

{∫
X

c(x,T (x))dµ(x) | T transport map between X and Y
}
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where a transport map T is a map from X to Y that preserves the
mass i.e. ∀B ⊂ Y, µ(T−1(B)) = ν(B).

In the 20th century, Kantorovich [11] proposed another formu-
lation that allows mass to split (which is not possible in Monge
formulation since T must be a valid map between X and Y). The
idea is to replace the transport map T by a transport plan γ which
is a probability measure on the product space X × Y . The problem
becomes:

min
γ

{∫
X×Y

c(x, y)dγ(x, y) | γ transport plan X and Y
}

where a transport plan γ is a probability measure on X × Y with
marginals µ and ν. With this formulation, the problem becomes a
linear programming problem with convex constraints. One can
then look at its dual formulation, which can be easily obtained
and is the following:

max
ϕ,ψ

{∫
X
ϕ(x)dµ(x) −

∫
Y
ψ(y)dν(y) | ∀x, y, ϕ(x) − ϕ(y) 6 c(x, y)

}
.

Under some assumptions on the cost function and the geometry
of X and Y , one can show that the two problems have solutions
that coincide [7]. The solutions of this dual problem (ϕ, ψ) are
called Kantorovich potentials.

1.2. Computational optimal transport
We now detail in two settings the numerical methods that exist

to solve optimal transport problems.

Discrete setting
When both µ =

∑
x∈X µxδx and ν =

∑
y∈Y νyδy are discrete

probability measures i.e. supported on point clouds in Rd, efficient
numerical methods exist. Most of them are based on the so-called
entropic regularization of optimal transport [2] that is a relaxation
of the dual Kantorovich formulation. It can be stated as the
following unconstrained maximization problem:

max
ϕ,ψ

∑
(x,y)∈X×Y

ε exp
(

1
ε

(ϕ(x) − ψ(y) − c(x, y))
)
+
∑
x∈X

ϕ(x)µx−
∑
y∈Y

ψ(y)νy
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where ε > 0 is a regularization parameter. The main numerical
methods available to solve this problem are variations of the so-
called Sinkhorn-Knopp algorithm, see Algorithm 1 for its simplest
version. This algorithm is interesting since it is extremely easy
to implement as it only relies on matrix multiplication. In this
algorithm, 1X denotes the vector with only ones with size the
number of elements in X. Gε is sometimes called the Gibbs matrix.
Because of its ease of implementation, it has been used with
success in numerous applications such as computing barycenters
of measures [12] or surface matching [13].

Input Measures µ, ν, cost matrix C = [c(x, y)]x∈X,y∈Y

Regularization parameter ε > 0
Maximum number of iterations kmax > 0

Output Kantorovich potentials ϕ, ψ solving the optimal
transport problem between µ and ν for the cost c

Set u0 ← 1X , v0 ← 1Y and Gε = exp(−C
ε

)
For k = 0 to kmax

• uk+1 ← µ/(Gεvk)

• vk+1 ← ν/(GT
ε uk+1)

Set ϕ = ε ln(ukmax ) and ψ = −ε ln(vkmax )
Algorithm 1: Sinkhorn-Knopp algorithm

Semi-discrete setting
We now look at the so-called semi-discrete setting where µ is

continuous and ν is a discrete probability measure. In this case,
efficient numerical methods relying on tools from computational
geometry [14], namely Power diagrams, have been developed.
Their convergence is well studied and make them tractable for
real-life applications [15, 16]. We briefly detail here the main
ingredients of this formulation. We denote ν =

∑N
i=1 νiδyi the

target probability measure. For a vector ψ ∈ RN , we define the
Laguerre cell of yi by

Lagi(ψ) = {x ∈ X | ∀ j, c(x, yi) + ψi 6 c(x, y j) + y j}.

One can then show that the Laguerre diagram (the collection
of all the Laguerre cells) is a partition of X and that the dual Kan-
torovich formulation is equivalent to maximizing the following
function Φ:

Φ(ψ) =

N∑
i=1

∫
Lagi(ψ)

(c(x, yi) + ψi)dµ(x) −
N∑

i=1

νiψi.

Under some assumptions on c and the geometry of the supports
of the source and target measures, see [17, 18, 19, 20], Φ is shown
to be concave and of class C2. Its gradient is given by ∇Φ(ψ) =
G(ψ) − ν where G(ψ) = (Gi(ψ))16i6N = (µ(Lagi(ψ))16i6N is the
vector of the areas of the Laguerre cells for a weight vector ψ.
Thus maximizing Φ means that we need to

Find a vector ψ ∈ RN such that G(ψ) = ν. (DMA)

This equation can be seen as a discretization of the so-called
Monge-Ampère equation hence its name (DMA). To solve this
equation, multiple numerical methods have been proposed. The
most interesting one is the so-called damped Newton’s method
[21, 17] since its convergence speed has been studied in different
settings, making it useful for many applications. The details
of the method can be found in Algorithm 2. In this algorithm,
DG+ denotes the pseudo-inverse of the Jacobian matrix DG. This

method is a variation of the Newton’s method with the added
condition that it preserves the fact that all the Laguerre cells have
positive mass (condition ε0 > 0 at the start and the second item in
the loop).

Input A source measure µ
A target measure ν =

∑
16i6N νiδyi

A numerical error η > 0
A family of weights ψ0 ∈ RN such that

ε0 := min
[
mini Gi(ψ0), mini νi

]
> 0

Output A family of weights ψk solving (DMA) up to η, i.e.∥∥∥G(ψk) − ν
∥∥∥ 6 η.

While
∥∥∥G(ψk) − ν

∥∥∥ > η

• Compute vk = −DG(ψk)+(G(ψk) − ν)

• Determine the minimum ` ∈ N such that
ψk,` := ψk + 2−`vk satisfies

min
16i6N

Gi(ψk,`) > ε0∥∥∥G(ψk,`) − ν
∥∥∥ 6 (1 − 2−(`+1))

∥∥∥G(ψk) − ν
∥∥∥

• Set ψk+1 = ψk + 2−`vk and k ← k + 1.

Algorithm 2: Damped Newton’s algorithm

1.3. Initialization problem
In both settings, the choice of initial parameters, (u0, v0) in the

discrete setting and ψ0 in the semi-discrete one, is important. In
the following, we will call this choice the initialization problem.
For instance, in the semi-discrete setting, for the damped New-
ton’s method to converge, see [18], a necessary condition is that
all the Laguerre cells must have positive mass at every step of
the algorithm and in particular at the beginning (stated by the
condition ε0 > 0). We will see in Section 3 that this condition can
be hard to ensure in practice. In the discrete setting, since there
is no notion of Laguerre cells, this problem does not arise but
we will show in Section 3 that choosing ”better” initial vectors
(u0, v0) will accelerate the convergence of Algorithm 1.

Not a lot of work was dedicated to the study of this problem.
In particular, since in the discrete setting, there is no a priori
constraint on the choice of initial parameters, the need of better
initial vectors is not obvious. The natural question would be:
can we improve the running time by choosing ”better” initial
parameters? We will see that numerical experiments answer this
question positively. In the semi-discrete setting, in most of the
applications, the target points lie in the source domain avoiding
this initialization issue. However, we will see in Section 3 that
there are some settings where this is not the case anymore and
where we need to also have efficient initialization procedures.

2. Initialization procedures

In this section, we present three initialization procedures that
can be used to compute initial parameters for speeding up optimal
transport algorithms in both the discrete and semi-discrete settings.
We also provide proofs of their correctness. We will also detail in
which specific settings each method works the best. We start by
looking at the semi-discrete setting.
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2.1. Local perturbation
The first method we will present only works for the quadratic

cost function c(x, y) = ‖x − y‖2 and when the support of the
source measure X is a compact set. It relies on the following
proposition (presented in [19] and included here for completeness)
that describes a way to choose weights such that all the Laguerre
cells are not empty.

Proposition 1. Let X ⊂ Rd be a compact set, Y = {y1, . . . , yN} ⊂

Rd be a point set and ψ0
i = −dX(yi)2. Then

∅ , {x ∈ X | dX(yi) = ‖x − yi‖} ⊂ Lagi(ψ
0)

where dX(yi) = minx∈X ‖x − yi‖.

Proof. Let i ∈ {1, . . . ,N} and x ∈ X such that dX(yi) = ‖x − yi‖,
then for j ∈ {1, . . . ,N}∥∥∥x − y j

∥∥∥2
+ ψ0

j =
∥∥∥x − y j

∥∥∥2
− dX(y j)2

> dX(y j)2 − dX(y j)2 = 0 = ‖x − yi‖
2 + ψ0

i .

Thus x ∈ Lagi(ψ
0).

We can then iteratively perturb these weights to make the La-
guerre cells have positive mass, this is the result of the next
proposition. It makes use of assumptions on the source and target
measures namely that µ should be a regular simplicial measure (a
measure supported on a triangulated surface in R3 for instance)
and the support of ν should be in generic position with respect
to the support of µ. More details about these assumptions can be
found in [19] such as the proof of the convergence of the damped
Newton’s method in this specific setting. In all the numerical
experiments, we will choose X to be a triangulated surface in R3,
setting in which the convergence result applies. We denote by
Z(ψ) the following set:

Z(ψ) = {i ∈ {1, . . . ,N} | Gi(ψ) = 0}

i.e. the set of indices of Laguerre cells with zero mass. We also
define the Power cell of yi

Powi(ψ) = {x ∈ Rd | ∀ j, ‖x − yi‖
2 + ψi 6

∥∥∥x − y j

∥∥∥2
+ ψ j}.

Let us remark that Lagi(ψ) = X ∩ Powi(ψ).

Proposition 2. Let µ be a regular simplicial measure supported
on X, Y be a point cloud in generic position with respect to
X. Let ψ ∈ RN be a vector such that Z(ψ) , ∅ and for every
i ∈ {1, . . . ,N}, Powi(ψ) ∩ X , ∅. Then there exists ε0 > 0 such
that for ε < ε0

Card(Z(ψ̃)) < Card(Z(ψ)) and ∀i ∈ {1, . . . ,N}, Powi(ψ̃) ∩ X , ∅

where ψ̃ = ψ − ε1Z(ψ). 1A denotes the vector of RN with a one on
the ith row if i ∈ A and a zero otherwise.

For the proof, we define, for i , j, the halfspace Hi, j(ψ) by

Hi, j(ψ) = {x ∈ Rd | ‖x − yi‖
2 + ψi 6

∥∥∥x − y j

∥∥∥2
+ ψ j}.

Let us remark that we have Powi(ψ) ⊂ Hi, j(ψ) for any j , i. We
will also need the two following lemmas.

Lemma 3. Let i ∈ {1, . . . ,N}, ε > 0, and ψ̃ = ψ − ε1{i}, then the
distance between ∂Hi, j(ψ) and ∂Hi, j(ψ̃) is given by

d(∂Hi, j(ψ), ∂Hi, j(ψ̃)) =
ε

2
∥∥∥yi − y j

∥∥∥ .

Let us remark that Hi, j(ψ) ⊂ Hi, j(ψ̃) meaning that ∂Hi, j(ψ̃)
moves closer to y j.

Lemma 4. Let µ be a regular simplicial measure supported on
X, p a point in X and ψ ∈ RN , we define the set of empty cells
containing p by

Zp(ψ) = {i ∈ Z(ψ) and p ∈ Powi(ψ) ∩ X}.

If Zp(ψ) , ∅ and ψ̃ = ψ − ε1Z(ψ) for ε > 0, there exists r > 0 such
that

B(p, r) ⊂
⊔

j∈Zp(ψ)

Pow j(ψ̃)

where B(p, r) denotes the ball of center p and radius r and
⊔

the
disjoint union.

Proof. We take a point p ∈ X, a weight vector ψ ∈ RN , i ∈ Zp(ψ),
ε > 0 and define ψ̃ = ψ − ε1Z(ψ). We also take j < Zp(ψ).

By definition, we have Powi(ψ) =
⋂

k,i Hi,k(ψ), thus Lemma 3
implies that if we choose r < ε

2‖yi−y j‖
then B(p, r) ⊂ Hi, j(ψ̃).

Furthermore, if we choose

r =
ε

4 min
i∈Zp(ψ), j<Zp(ψ)

∥∥∥yi − y j

∥∥∥ ,
then we get

∀ j < Zp(ψ), B(p, r) ⊂
⋃

i∈Zp(ψ)

Hi, j(ψ̃).

Taking the complement that we denote by X{ (for a set X ⊂ Rd),
we get

∀ j < Zp(ψ), B(p, r){ ⊃

 ⋃
i∈Zp(ψ)

Hi, j(ψ̃)


{

=
⋂

i∈Zp(ψ)

Hi, j(ψ̃){

=
⋂

i∈Zp(ψ)

H j,i(ψ̃) ⊃ Pow j(ψ̃).

This means ⋂
j<Zp(ψ)

Pow j(ψ̃) ⊂ B(p, r){.

Finally, taking the complement again and using the fact that the
Power diagram is a partition of Rd, we obtain the intended result
i.e.

B(p, r) ⊂
⋃

j<Zp(ψ)

Pow j(ψ̃){ =
⋃

j∈Zp(ψ)

Pow j(ψ̃).

Proof of Proposition 2. We take ψ ∈ RN such that Z(ψ) , ∅
and for every i, Powi(ψ) ∩ X , ∅. According to Theorem 14
in [19], G is of class C1. In particular it is continuous, so we
can find ε0 > 0 such that for ε < ε0 and ψ̃ = ψ − ε1Z(ψ), we
have: Gi(ψ) > 0 =⇒ Gi(ψ̃) > 0. Furthermore, if i ∈ Z(ψ) then
Powi(ψ) ⊂ Powi(ψ̃). We conclude that if Powi(ψ)∩X is not empty
then Powi(ψ̃) ∩ X stays not empty.

We now take p ∈ X such that Zp(ψ) , ∅ and ε < ε0, then
Lemma 4 gives the existence of r > 0 such that

B(p, r) ⊂
⊔

j∈Zp(ψ)

Pow j(ψ̃).
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We know that p belongs to a simplex σ. Since µ is a regular
simplicial measure, the density µσ with respect to the dim(σ)-
dimensional Hausdorff measure on σ is bounded from below
(second item in the definition of a regular simplicial measure),
so that µ(B(p, r) ∩ σ) > 0. Thus 0 < µ(B(p, r) ∩ σ) 6∑

j∈Zp(ψ) µ(Pow j(ψ̃) ∩ σ). This means that there exists j ∈ Zp(ψ)
such that µ(Pow j(ψ̃) ∩ σ) > 0 i.e. j < Z(ψ̃). Thus we found
a Laguerre cell Lag j(ψ) that gained mass i.e. Card(Z(ψ̃)) <
Card(Z(ψ)).

We can then combine Proposition 1 and iteratively apply Propo-
sition 2 to obtain the following result which guarantees that no
Laguerre cell will have a mass of zero after the initialization step.

Proposition 5. Let µ be a regular simplicial measure supported
on X ⊂ Rd, Y ⊂ Rd a point cloud in generic position with respect
to X. Let us set ψ0

i = −dX(yi)2 such that Lagi(ψ
0) , ∅ for all i ∈

{1, . . . ,N}. Then there exists ψ̃ ∈ RN such that Card(Z(ψ̃)) = 0.

Proof. Iterating Proposition 2 starting from the weights ψ0, we
obtain an integer sequence (Card(Z(ψi)))i>0 that is strictly de-
creasing, thus converging towards 0.

The detailed procedure corresponding to this proposition can
be found in Algorithm 3. Its convergence is directly implied by
Proposition 5. This method only needs one parameter that is ε i.e.
the maximal quantity for which we decrease the weights ψ. What
the inner loop does is checking whether for this choice of ε we
obtain a smaller amount of Laguerre cells with zero-mass. If it is
the case, we exit the loop. If not, we halve ε and try again. The
previous proposition ensures that such a choice of ε exists (even
if it is very small).

Input A regular simplicial measure µ
A finitely supported measure ν =

∑
16i6N νiδyi

A maximal decrement ε > 0
A family of weights ψ0 ∈ RN such that ∀i, Lagi(ψ

0) , ∅

Output A family of weights ψ such that ∀i, Gi(ψ) > 0.

Initialization ψ← ψ0, z← Card(Z(ψ0))

while z > 0 do
zcur ← N
εcur ← ε
while zcur > z do

ψcur ← ψ − εcur1Z(ψcur)
zcur ← Card(Z(ψcur))
if zcur < z then

ψ← ψcur

z← Card(Z(ψ))
break

else
εcur ← εcur/2

end
end

end
Algorithm 3: Local perturbation method

2.2. Rescaling
In the second method, we make use of the relation between the

Laguerre cells of a point cloud Y and the point cloud Z = λY + t

which is a uniform scaling followed by a uniform translation of Y ,
given by the following proposition. Let us note that this method
also only works for the quadratic cost.

Proposition 6. Given a point set Y = {y1, . . . , yN} ⊂ Rd, λ > 0
and t ∈ Rd, if we define the point set Z = {z1, . . . , zN} ⊂ Rd

by zi = λyi + t, then there is the following relation between the
Laguerre cells of the two sets

Lagzi
(ψ) = Lagyi

(ϕ)

where ϕi =
ψi
λ

+ 2〈t | yi〉 + (λ − 1) ‖yi‖
2 for i ∈ {1, . . . ,N}.

Proof. Let us take x ∈ Lagzi
(ψ) for a vector of weights ψ ∈ RN

and j ∈ {1, . . . ,N}, we have∥∥∥z j

∥∥∥2
− ‖zi‖

2 = 〈z j − zi | z j + zi〉

= λ〈y j − yi | λ(y j + yi) + 2t〉

= λ2(
∥∥∥y j

∥∥∥2
− ‖yi‖

2) + 2λ〈t | y j − yi〉

= λ
[∥∥∥y j

∥∥∥2
− ‖yi‖

2 + (λ − 1)(
∥∥∥y j

∥∥∥2
− ‖yi‖

2) + 2〈t | y j − yi〉

]
.

Thus

x ∈ Lagzi
(ψ) ⇐⇒ ∀ j, ‖x − zi‖

2 + ψi 6
∥∥∥x − z j

∥∥∥2
+ ψ j

⇐⇒ ∀ j, − 2〈x | zi − z j〉 6 ψ j − ψi +
∥∥∥z j

∥∥∥2
− ‖zi‖

2

⇐⇒ ∀ j, − 2〈x | yi − y j〉 6 ϕ j − ϕi +
∥∥∥y j

∥∥∥2
− ‖yi‖

2

⇐⇒ ∀ j, ‖x − yi‖
2 + ϕi 6

∥∥∥x − y j

∥∥∥2
+ ϕ j

⇐⇒ x ∈ Lagyi
(ϕ).

There are no general ways for finding t and λ since they heavily
depend on the geometry of X and Y . Two simple ways are pre-
sented below. We denote by X the centroid of a domain X ⊂ Rd.
If X = {x1, . . . , xN} is finite then X = 1

N
∑N

i=1 xi; if it is a continu-

ous domain equipped with some measure µ then X =

∫
X xdµ(x)∫
X dµ(x)

. We

also denote by bbox(X) an axis-aligned bounding box of a domain
X ⊂ Rd. Finally, the diameter of a compact set X is denoted by
diam(X) = maxx,y∈X ‖x − y‖. With these notations, we propose
the following choices:

• (t, λ) =
(
X − Y , diam(X)

diam(Y)

)
,

• (t, λ) =
(
bbox(X) − bbox(Y), vol(bbox(X))

vol(bbox(Y))

)
.

We then deduce the following initialization strategy.

Proposition 7. Let µ be a probability measure supported on X ⊂
Rd and ν a discrete probability measure supported on a point set
Y ⊂ Rd. If there exists t ∈ Rd and λ > 0 such that Z := λY + t ⊂ X,
then we can find ψ ∈ RN such that Gi(ψ) > 0 for all i ∈ {1, . . . ,N}.

Proof. Let us suppose that there exists t and λ such that Z :=
λY +t ⊂ X. Then for the target measure νZ =

∑
zi∈Z νyiδzi it suffices

to set ψ0 to a constant to ensure the positivity of the masses of
the Laguerre cells (since Z ⊂ X) and we can solve the optimal
transport problem between µ and νZ . We then use Proposition 6
to deduce optimal weights ϕ for the transport between µ and the
original target measure ν i.e. we have Gi(ϕ) = νyi > 0.
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2.3. Linear interpolation
Finally, the last method we will introduce relies on a linear

interpolation between two source measures: the original one µ
and the normalized Lebesgue measure λP defined on a bigger
domain P containing X and Y . The interpolated measure will be
denoted by µt and is defined by

∀t ∈ [0, 1], µt = tλP + (1 − t)µ.

The idea is to start with t = 1 i.e. µ1 = λP. Since P is chosen
to be ”big enough”, one can choose weights ψ0 for which all the
Laguerre cells have positive mass. We then iteratively decrease the
interpolation parameter t until we reach a sufficiently small value
for which we are sure that the Laguerre cells for µ have positive
mass. This minimal value for t is given by the next proposition:

Proposition 8. For t < mini νi − η where η is the numerical error
of Algorithm 2 then for every i ∈ {1, . . . ,N}, µ(Lagi(ψ)) > 0.

For the proof, we will need the next lemma.

Lemma 9. Let µ be a probability measure defined on X, λP the
normalized Lebesgue measure on P and µt = tλP + (1 − t)µ, for
t ∈]0, 1[ be a probability measure on P. Then

∀A ⊂ P, µt(A) > t =⇒ µ(A) > 0.

Proof. We take 0 < t < 1 and suppose that µt(A) > t and µ(A) = 0.
Then since µt(A) = tλP(A), we get λP(A) > 1 which is not possible
since λP is a probability measure over P. Thus µ(A) > 0.

Proof of Proposition 8. For a numerical error η and i ∈

{1, . . . ,N}, at the end of the optimal transport algorithm (see Al-
gorithm 2) between two measures µt and ν =

∑N
i=1 νiδyi , we have

|µt(Lagi(ψ))−νi| 6 η. Thus µt(Lagi(ψ)) > νi−η > mini νi−η. So
if t < mini νi − η then µt(Lagi(ψ)) > t and we can apply Lemma 9
with A = Lagi(ψ), so that µ(Lagi(ψ)) > 0.

Let us note that this method is not restricted to the quadratic
cost and can work with any cost function. This can be useful in
some applications, for instance in optical component design, see
[22] and Section 3 for more details.

The details for this method can be found in Algorithm 4. In
this algorithm SOLVE OT(µ, ν, η, ψ0) denotes a function that solves
optimal transport between µ and ν, for a numerical error η > 0 and
starting from weights ψ0 (which can be Algorithm 2 for instance).

Input A source measure µ supported on X
A target measure ν =

∑
16i6N νiδyi

A set P that contains X ∪ Y
A tolerance η > 0
Weights ψ0 ∈ RN such that ∀i, λP(Lagi(ψ

0)) > 0.

Output A family of weights ψ such that ∀i, Gi(ψ) > 0.

Initialization k := 0 and t := 1

while t > tmin := max(mini νi − η, 0) do
Define µt = tλP + (1 − t)µ
ψk+1 ← SOLVE OT(µt, ν, η, ψ

k)
t ← t/2
k ← k + 1

end
Algorithm 4: Interpolation method

2.4. Discrete setting

We now look at the discrete setting. We recall the relation
between Kantorovich potentials and Sinkhorn vectors that is
(ϕ, ψ) = (ε ln(u),−ε ln(v)), see [7] for a proof. We can then adapt
the previous methods:

• Local perturbation : in the discrete setting, it is impossible
to check for the positiveness of the masses of the Laguerre
cells since they do not exist. Therefore, we can only choose
the weights defined in Proposition 1 (which can also be
defined in the discrete setting);

• Rescale : we use it in the same way except that quantities
such as centroids and bounding boxes are computed for point
clouds;

• Interpolation : in this case, the normalized Lebesgue mea-
sure used for the interpolation is supported on a grid (2D or
3D depending on the dimension) that is ”around” the source
and target point clouds. More precisely, the convex hull
of the support of the normalized Lebesgue measure must
contain X and Y .

2.5. Pros and cons

To finish this section, we summarize the pros and cons of each
method in Table 1. We explain some of the observations below:

• ”many iterations” in the Local perturbation method is re-
lated to the fact that we do not have explicit bounds on the ε
parameter. In practice, we choose it to be sufficiently small
to reduce the number of iterations in the inner loop;

• ”same dimension” in the Rescale method means that X and
Y should have the same intrinsic geometry for the method to
work i.e. for finding correct values for λ and t;

• precision on the running times of each method will be given
in the next section.

Method Pros Cons
Local perturbation fast

guarantees SD
quadratic cost
many iterations

Rescale fast
guarantees SD

quadratic cost
same dimension

Interpolation any cost
guarantees SD

slow

Table 1: Pros and cons of each initialization method. “guarantees X” means that
we have theoretical guarantees on the convergence of the method in setting X
(where ”SD” means semi-discrete and ”D” discrete).

3. Numerical results

We now illustrate the three methods we previously described
on different examples in 2D and 3D in both the semi-discrete and
discrete settings. We also consider some applications.
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3.1. Semi-discrete optimal transport

We start by illustrating the convergence speed of the three
initialization procedures on different examples in the semi-discrete
setting. In all the cases we will consider, the source measure will
be supported on a triangulations.

Firstly, we look at two-dimensional examples i.e. when both
the source and target measures are supported on 2D domains. In
Figure 1, we display the support of the source and target measures
as well as the number of Laguerre cells with zero mass during
the Local perturbation procedure for a decrement parameter
ε = 10−1. In Figure 2, we display one setting in which the
Rescale procedure works and one where it doesn’t. In the bottom
example, the methods to choose t and λ that we proposed are too
simple and illustrate the fact that this procedure cannot handle
even simple examples (for which the other two methods work).
Finally, in Figure 3, we display for the same examples of Figure 1,
the results of the Interpolation method. We show the Laguerre
cells at the beginning and at the end of the procedure. One can
clearly see that, at the end, all the Laguerre cells intersect the
support of the source measure.

Secondly, we look at source measures supported on triangulated
surfaces. In this setting, the Rescale method can not be used
since, in general, it is not possible to find uniform translation and
scaling parameters (t, λ) that moves a point set onto a triangulated
surface. That is why we only illustrate the other two methods.
In Figure 4, we illustrate the Local perturbation method on
two settings. In Figures 5 and 6, we display the results of the
Interpolation method. We see that in a few iterations (around 10),
we manage to get rid of all the empty Laguerre cells.

We finish by some remarks on the Local perturbation method.
We observe that for each case the method converges but the num-
ber of iterations remains quite big. This number obviously de-
pends on the decrement parameter ε in the algorithm. It should not
be chosen too big since it will increase the number of iterations in
the inner loop. One can also remark that this method also works
when the support of the source measure is disconnected, a case
that is not covered by the convergence result presented in [19].

Figure 1: Left: setting (the source measure supported on the red domain and the
target measure on the blue point set). Right: results of the Local perturbation
method, we display the number of Laguerre cells with zero mass at each step of
the algorithm. Maximal decrement ε is set to 10−1.

Figure 2: The rescaled target point set is displayed in green in two examples. Top:
example where the Rescale method works, Bottom: example where it fails (the
green set is not contained in the red region).

3.2. Discrete optimal transport
We now look at the case of discrete optimal transport. On

Figures 7 and 8, we display the running times of the Sinkhorn-
Knopp algorithm (see Algorithm 1) initialized with the weights
obtained with the three methods for different regularization pa-
rameters and discretizations of measures supported on 2D sets
and triangulated surfaces. We observe that the algorithm is faster
when using the weights obtained after the Rescale (red) or the
Interpolation (green) method. Choosing the weights from the
Local perturbationmethod always ended in longer running times.
One can observe a ”bump” in Figure 7 (bottom), we suspect this
is due to the specific configuration of randomly sampled points
for the corresponding discretization. Furthermore, in Figure 8,
only the Interpolation method improves the running time. We
think that the Local perturbation method does not improve the
running time because of the choice of the initial weights (given
by Proposition 1) that make the convergence slower.

3.3. Applications
We now detail some applications where such initialization tech-

niques can be useful.

Rigid matching between a point cloud and a mesh
For the first application, we show how one can use these initial-

ization procedures in some more traditional geometry processing
algorithms such as finding the ”best” rigid (rotation and transla-
tion) transformation between a mesh and a point cloud. To do this,
we will use the OT-ICP algorithm described in [19] (Section 6.2).
In this algorithm, one replaces the Euclidean nearest-neighbor
query in the traditional Iterative Closest Point (ICP) algorithm
with an optimal transport calculation by associating each point in
the point cloud to the centroid of its Laguerre cell on the mesh.
The authors show that, despite having a longer running time, the
final registration error is smaller. When considering such algo-
rithm, since the points do not lie on the mesh, one is confronted
to an initialization problem.

We illustrate the efficiency of the Local perturbation method
on different examples, see Figure 9. The point cloud to register
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Figure 3: Illustrations of the Interpolation method for the three examples of
source and target measures of Figure 1. Left: initial Laguerre cells, Right: final
Laguerre cells. The final Laguerre cells intersect the support of the source measure
in the three cases while the initial ones don’t.

is obtained by sampling points on the target mesh; adding some
noise to it; translating it and rotating it by π/2.

Non-imaging optics
We now detail an application of these initialization procedures

in the field of non-imaging optics. In this field, one is interested
in designing optical components (such as mirrors or lenses) with
prescribed reflection or refraction patterns, see Figure 10 for an
illustration of one of those problems. Applications of such prob-
lems include public lighting where one wants to design optical
components in order to decrease light loss and light pollution or
for designing car headlights [23] which do not blind incoming
cars.

It has been shown [24, 16, 25] that optimal transport allows to
solve numerous of these problems in a unified setting. Indeed, the
dual variables (the Kantorovich potentials (ϕ, ψ)) directly gives
access to a parametrization of the optical component.

When designing such components, if the size of the light source
is too small then it can happen that the Laguerre cells will not
intersect it and thus have zero mass, preventing the use of the
damped Newton’s method. Thus, it is important to have a way
to correctly initialize the algorithm. In this context, we used the
Interpolation method in a simple example, see Figure 11. In
this example, the target light is discrete and is represented as a
grid of 32x32 directions, where each direction targets a pixel of
the right image in Figure 10. The Laguerre cells are located in

Figure 4: Illustrations of the Local perturbation method for source measures
supported on triangulated surfaces. Left: setting (the source measure is supported
on the red triangulation and the target measure on the blue point cloud). Right:
evolution of the number of empty Laguerre cells. Maximal decrement ε is set to
10−1.

Figure 5: Illustrations of the Interpolation method for source measures supported
on triangulated surfaces. Left: initial Laguerre cells. Right: final Laguerre cells.
In the top example, the source measure is supported on the right half of a sphere
while in the bottom one, it is supported on the union of two triangulated spheres.

the support of the directional light source represented here by a
uniform measure on the square [−1, 0] × [−1, 1]. The normalized
Lebesgue measure is here supported on [−1, 1]2 where all the
directions lie in. We see that at the beginning approximately half
of the Laguerre cells do not intersect the support of the light source
while after doing the initialization step using the Interpolation
method, all Laguerre cells intersect it.

Seismic imaging
Optimal transport has also been shown to be a useful tool in

seismic imaging and in particular in the Full Waveform Inversion
framework. In this framework, one wants to reconstruct the sub-
surface of the Earth using seismic images. In particular, one needs
to be able to compute the error (called misfit) between two seismic
images. In [26], it has been shown that the distances arising from
optimal transport (the so-called Wasserstein distances) help in
”convexifying” the misfit function and thus avoids local minima.
See the top row of Figure 12 for two examples of seismic images.
Current algorithms using this misfit function solve optimal trans-
port in the discrete setting using for instance the dual formulation
of the 1-Wasserstein distance to handle non-positive measures.
The main obstacle in using semi-discrete methods is the fact that
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Figure 6: Evolution of the number of empty Laguerre cells for the two examples
of Figure 5.

due to the oscillatory nature of the seismic signals, ensuring that
all the Laguerre cells have positive mass is not an easy task, see
the bottom row of Figure 12.

We show using our initialization procedures that we are able
to find such weights and thus compute optimal transport maps.
Seismic signals are given as greyscale images. The first thing
we do is we convert them into a source and target measures for
which we will solve optimal transport. We see the images as
height fields (the height representing the amplitude of the signal).
We normalize the heights to be in [−1, 1]. The target measure
is simply the uniform measure supported on this point cloud
while the source measure is the uniform measure supported on
the Delaunay triangulation of the 2D grid.

Another difficulty raised by the oscillatory natures of the signals
is the computation of the Laguerre diagrams becoming expensive,
see the benchmarks on the top and middle rows of Figure 13. We
use the fact that, for the quadratic cost, one can see the Laguerre
diagram as the intersection between a Power diagram and the
support of the source measure (here a triangulation). One can then
use efficient algorithms to compute this intersection, see [27, 28]
for instance. We observe that the computation time is linear in
the number of target points and more than linear in terms of the
number of source triangles. Nevertheless, we are able to compute
initial weights and optimal transport maps, see the bottom row of
Figure 13 for one example.

4. Conclusion

In this paper, we presented three different procedures that can
be used to improve the performance of numerical methods to solve
optimal transport in both the discrete and semi-discrete settings.
We also showed numerous numerical examples illustrating the
performance of these methods. In the future, we would like to see
if we can improve the running time of these methods as well as
applying them in other contexts. For instance, we wonder if we
can adapt the same kind of techniques developed in [29, 30] for
seismic data analysis. in the semi-discrete setting
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